skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kennedy, Robert T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While the centrality of posttranscriptional modifications to RNA biology has long been acknowledged, the function of the vast majority of modified sites remains to be discovered. Illustrative of this, there is not yet a discrete biological role assigned for one of the most highly conserved modifications, 5-methyluridine at position 54 in tRNAs (m5U54). Here, we uncover contributions of m5U54 to both tRNA maturation and protein synthesis. Our mass spectrometry analyses demonstrate that cells lacking the enzyme that installs m5U in the T-loop (TrmA inEscherichia coli, Trm2 inSaccharomyces cerevisiae) exhibit altered tRNA modification patterns. Furthermore, m5U54-deficient tRNAs are desensitized to small molecules that prevent translocation in vitro. This finding is consistent with our observations that relative to wild-type cells,trm2Δcell growth and transcriptome-wide gene expression are less perturbed by translocation inhibitors. Together our data suggest a model in which m5U54 acts as an important modulator of tRNA maturation and translocation of the ribosome during protein synthesis. 
    more » « less
  2. The cycle time of a standard liquid chromatography (LC) system is the sum of the time for the chromatographic run and the autosampler injection sequence. Although LC separation times in the 1-10 s range have been demonstrated, injection sequences are commonly >15 s, limiting throughput possible with LC separations. Further, such separations are performed on relatively large bore columns requiring flow rates of ≥5 mL/min, thus generating large volumes of mobile phase waste when used for large scale screening and increasing the difficulty in interfacing to mass spectrometry. Here, a droplet injector system was established that replaces the autosampler with a four-port, two-position valve equipped with a 20 nL internal loop interfaced to a syringe pump and a three-axis positioner to withdraw sample droplets from a well plate. In the system, sample and immiscible fluid are pulled alternately from a well plate into a capillary and then through the injection valve. The valve is actuated when sample fills the loop to allow sequential injection of samples at high throughput. Capillary LC columns with 300 μm inner diameter were used to reduce the consumption of mobile phase and sample. The system achieved 96 separations of 20 nL droplet samples containing 3 components in as little as 8.1 min with 5-s cycle time. This system was coupled to a mass spectrometer through an electrospray ionization source for high-throughput chemical reaction screening. 
    more » « less
  3. Among RNAs, transfer RNAs (tRNAs) contain the widest variety of abundant post-transcriptional chemical modifications. These modifications are crucial for tRNAs to participate in protein synthesis, promoting proper tRNA structure and aminoacylation, facilitating anticodon:codon recognition, and ensuring the reading frame maintenance of the ribosome. While tRNA modifications were long thought to be stoichiometric, it is becoming increasingly apparent that these modifications can change dynamically in response to the cellular environment. The ability to broadly characterize the fluctuating tRNA modification landscape will be essential for establishing the molecular level contributions of individual sites of tRNA modification. The locations of modifications within individual tRNA sequences can be mapped using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). In this approach, a single tRNA species is purified, treated with ribonucleases and the resulting single-stranded RNA products are subject to LC-MS/MS analysis. The application of LC-MS/MS to study tRNAs is limited by the necessity of analyzing one tRNA at a time because the digestion of total tRNA mixtures by commercially available ribonucleases produces many short digestion products unable to be uniquely mapped back to a single site within a tRNA. We overcame these limitations by taking advantage of the highly structured nature of tRNAs to prevent the full digestion by single-stranded RNA specific ribonucleases. Folding total tRNA prior to digestion allowed us to sequence S. cerevisiae tRNAs with up to 97% sequence coverage for individual tRNA species by LC-MS/MS. This method presents a robust avenue for directly detecting the distribution of modifications in total tRNAs. 
    more » « less
  4. While the centrality of post-transcriptional modifications to RNA biology has long been acknowledged, the function of the vast majority of modified sites remains to be discovered. Illustrative of this, there is not yet a discrete biological role assigned for one the most highly conserved modifications, 5-methyluridine at position 54 in tRNAs (m5U54). Here, we uncover contributions of m5U54 to both tRNA maturation and protein synthesis. Our mass spectrometry analyses demonstrate that cells lacking the enzyme that installs m5U in the T-loop (TrmA inE. coli, Trm2 inS. cerevisiae) exhibit altered tRNA modifications patterns. Furthermore, m5U54 deficient tRNAs are desensitized to small molecules that prevent translocationin vitro.This finding is consistent with our observations that, relative to wild-type cells,trm2Δ cell growth and transcriptome-wide gene expression are less perturbed by translocation inhibitors. Together our data suggest a model in which m5U54 acts as an important modulator of tRNA maturation and translocation of the ribosome during protein synthesis. 
    more » « less
  5. Chemical modifications to protein encoding messenger RNAs (mRNAs) influence their localization, translation, and stability within cells. Over 15 different types of mRNA modifications have been observed by sequencing and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) approaches. While LC-MS/MS is arguably the most essential tool available for studying analogous protein post-translational modifications, the high-throughput discovery and quantitative characterization of mRNA modifications by LC-MS/MS has been hampered by the difficulty of obtaining sufficient quantities of pure mRNA and limited sensitivities for modified nucleosides. We have overcome these challenges by improving the mRNA purification and LC-MS/MS pipelines. The methodologies we developed result in no detectable non-coding RNA modifications signals in our purified mRNA samples, quantify 50 ribonucleosides in a single analysis, and provide the lowest limit of detection reported for ribonucleoside modification LC-MS/MS analyses. These advancements enabled the detection and quantification of 13 S. cerevisiae mRNA ribonucleoside modifications and reveal the presence of four new S. cerevisiae mRNA modifications at low to moderate levels (1-methyguanosine, N 2-methylguanosine, N 2, N 2-dimethylguanosine, and 5-methyluridine). We identified four enzymes that incorporate these modifications into S. cerevisiae mRNAs (Trm10, Trm11, Trm1, and Trm2, respectively), though our results suggest that guanosine and uridine nucleobases are also non-enzymatically methylated at low levels. Regardless of whether they are incorporated in a programmed manner or as the result of RNA damage, we reasoned that the ribosome will encounter the modifications that we detect in cells. To evaluate this possibility, we used a reconstituted translation system to investigate the consequences of modifications on translation elongation. Our findings demonstrate that the introduction of 1-methyguanosine, N 2-methylguanosine and 5-methyluridine into mRNA codons impedes amino acid addition in a position dependent manner. This work expands the repertoire of nucleoside modifications that the ribosome must decode in S. cerevisiae. Additionally, it highlights the challenge of predicting the effect of discrete modified mRNA sites on translation de novo because individual modifications influence translation differently depending on mRNA sequence context. 
    more » « less